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Abstract. Magnetic and electric properties of the Hubbard model with binary alloy disorder are studied
within the dynamical mean-field theory. A paramagnet-ferromagnet phase transition and a Mott-Hubbard
metal-insulator transition are observed upon varying the alloy concentration. A disorder induced enhance-
ment of the Curie temperature is demonstrated and explained by the effects of band splitting and subband
filling.

PACS. 71.10.-w Theories and models of many-electron systems – 71.10.Fd Lattice fermion models
(Hubbard model, etc.) – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

There is a great concern about the nature of itinerant fer-
romagnetism in correlated electron systems with disorder,
such as, e.g., doped manganites (La1−xSrxMnO3) [1,2], al-
loyed ruthenates (SrRu1−xMnxO3) [3], or alloyed Kondo
insulators (FeSi1−xGex) [4,5]. Moreover, it is of fun-
damental importance for industrial applications to pre-
cisely control the Curie temperature of different ferro-
magnetic alloys or diluted magnetic semiconductors, e.g.
Ga1−xMnxAs [6,7].

In typical transition metals (e.g. Fe, Ni or Co) the sub-
tle competition between kinetic and Coulomb energies to-
gether with the Pauli principle leads to the occurrence of
a ferromagnetic phase. Since the transition happens when
both contributions to the total energy are of the same or-
der, theoretical methods to study such systems have to
be nonperturbative [8]. Within the dynamical mean-field
theory (DMFT) [9–11] detail conditions for occurrence of
ferromagnetism in a one-band Hubbard model were eluci-
dated [12,13]. The same nonperturbative scheme together
with a density functional theory in the local density ap-
proximation was used to describe ferromagnetic phases of
Fe and Ni [14]. The presence of a binary alloy disorder
introduces a new nonperturbative aspect into the prob-
lem. Namely, when the difference between ion energies ∆
is larger then the band-width W , the conducting band is
split and two alloy subbands are formed [15].

Recent investigation of the one-band Hubbard model
with a binary alloy disorder demonstrated an intriguing
interplay between effects due to interaction and random-
ness [16]. It was shown in reference [16] that for elec-
tron densities n < x, where x was a fixed concentration
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of an alloy ion, and for large local Coulomb interactions
U the Curie temperature Tc is enhanced when ∆ is in-
creased. Additionally, at n = x the Mott-Hubbard metal-
insulator transition (MIT) occurs for ∆ = ∆c(U). The
Mott-Hubbard transition in a non-integer filled system
with binary alloy disorder was investigated further in ref-
erence [17] where the notions of an alloy Mott insulator
(∆ > U) and an alloy charge-transfer insulator (∆ < U)
were introduced.

In the present paper we study the one-band Hubbard
model and determine its physical properties, such as the
Curie temperature, as a function of x. The Mott-Hubbard
MIT can be reached by varying x while n, ∆ and U are
constants. Such MIT will be called an alloy concentra-
tion controlled Mott transition. This notion extends the
previous classification of band-width controlled and filling
controlled Mott transitions [1]. As will be presented be-
low, under certain circumstances the Curie temperature
has a maximum at a finite alloy concentration. All those
effects, as explained below, are caused by a subtle inter-
play between alloy band splitting and correlations.

The present work is motivated by real experimental
situations where the tuning parameter is rather x than ∆.
Namely, while the latter is fixed for given atoms the for-
mer can be varied by making different alloy composi-
tions or changing chemical stoichiometry. Thereby, the
controlling of Curie temperature Tc(x) is experimentally
accessible. The examples are bcc Fe-Co or fcc Ni-Cu al-
loys [18,19]. In the first case, due to alloying, the system
is driven from weak to strong ferromagnetism, whereas
in the latter case the system is changed from a ferro-
magnet to a paramagnet. Interestingly, the behavior of
the saturated magnetization and the Curie temperature in
Fe-Co are non-monotonous functions of x reaching max-
ima at 30% concentration of Co [18]. Other interesting
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examples are pyrite alloys T1−xT’xS2, where T (T’) stands
for transition metals: Fe, Co, Ni, Cu, Zn [20]. Starting from
FeS2 and alloying it with Co, the empty eg band (FeS2

is a narrow-band semiconductor) is progressively filled in
with electrons and the system becomes a disordered itin-
erant ferromagnet. Surprisingly, the maximum Tc(x) in
Fe1−xCoxS2 occurs not at x = 1 but at x ≈ 0.76. In dif-
ferent compound UCu2Si2−xGex the Curie temperature
has a maximum at x ≈ 1.6, i.e. again when the system
is disordered [21]. Interesting aspect of this alloy is that
since Si and Ge are isovalent, the system is isoelectronic
and the disorder has only structural character not influ-
encing directly the magnetic arrangement.

In Section 2 we introduce a one-band Anderson-
Hubbard model with quenched binary alloy disorder and
solve it within DMFT framework. In Section 3 we present
our results on ferromagnetic properties of this model when
the density of electrons is independent of alloy concen-
tration, i.e. the system is isoelectronic when x is varied.
Next, in Section 4 we discuss our results when the sys-
tem is non-isoelectronic under the change of x. Section 5
presents conclusions and a final discussion.

2 Model and dynamical mean-field theory

2.1 Anderson-Hubbard Hamiltonian

Itinerant electron ferromagnetism in binary alloy is de-
scribed hereby the Anderson-Hubbard Hamiltonian with
uncorrelated on-site disorder

H =
∑

ij,σ

tij ĉ
+
iσ ĉjσ +

∑

iσ

εin̂iσ + U
∑

i

n̂i↑n̂i↓, (1)

where tij is the hopping matrix element, U is the local
Coulomb interaction, ĉ+

iσ is the fermionic creation oper-
ator for an electron with spin σ in Wannier state i, and
n̂iσ is the particle number operator. The quenched dis-
order is represented by the atomic energies εi, which are
random variables. We consider binary alloy disorder where
the atomic energy is distributed according to the binomial
probability density

P (εi) = xδ

(
εi +

∆

2

)
+ (1 − x)δ

(
εi − ∆

2

)
. (2)

Here ∆ is the energy difference between the two atomic en-
ergies, providing a measure of the disorder strength, while
x and 1−x are the concentrations of the two alloy atoms.
For ∆ � W , where W is the band-width, it is known
that binary alloy disorder causes a band splitting [15]. The
number of states in each alloy subband is equal to 2xNa

and 2(1 − x)Na, respectively, where Na is the number of
lattice sites and a factor two counts the spin degeneracy.

2.2 Dynamical mean-field theory

The Anderson-Hubbard Hamiltonian (1) is not solvable
at any finite space dimension. It is however numerically

solvable in an infinite dimension after a proper rescaling
of the hopping parameters [22], i.e. a set of self-consistent
DMFT equations is derived [9–11]. The local nature of the
theory implies that short-range order in position space
is missing. However, dynamical correlations due to the
local interaction and disorder [23,24] are fully taken into
account.

In the DMFT scheme the local Green function Gσn is
given by the bare density of states N0(ε) and the local
self-energy Σσn as

Gσn =
∫

dε
N0(ε)

iωn + µ − Σσn − ε
. (3)

Here the subscript n refers to the Matsubara frequency
ωn = (2n+1)π/β for the temperature T , with β = 1/kBT ,
and µ is the chemical potential. Within DMFT the local
Green function Gσn is determined self-consistently by

Gσn = −
〈∫

D [cσ, c�
σ] cσnc�

σneAi{cσ,c�
σ,G−1

σ }
∫

D [cσ, c�
σ] eAi{cσ,c�

σ,G−1
σ }

〉

dis

, (4)

together with the k-integrated Dyson equation

G−1
σn = G−1

σn + Σσn. (5)

The single-site action Ai for a site with the ionic energy
εi = ±∆/2 for i =A and B, respectively, has the form

Ai{cσ, c�
σ,G−1

σ } =
∑

n,σ

c�
σnG−1

σn cσn − εi

∑

σ

∫ β

0

dτnσ(τ)

− U

2

∑

σ

∫ β

0

dτc∗σ(τ)cσ(τ)c∗−σ(τ)c−σ(τ), (6)

where we used a mixed time/frequency convention for
Grassmann variables cσ, c�

σ. In the presence of binary al-
loy disorder, the single impurity problem has to be solved
twice in each self-consistency loop. Averages over the ran-
domness are obtained by [15,23,24]

〈· · · 〉dis =
∫

dεP (ε)(· · · ). (7)

Due to the local nature of the theory and the arithmetic
averaging of the physical one-particle quantities, Anderson
localization is not captured [25,26].

An asymmetric density of states is known to stabilize
ferromagnetism in the one-band Hubbard model for mod-
erate values of U [8,12,13]. Therefore, we use the density
of states of the fcc-lattice in infinite dimension [27],

N0(ε) =
exp[− 1+

√
2ε

2 ]
√

π(1 +
√

2ε)
. (8)

This density of states has a square root singularity at
ε = −1/

√
2 and vanishes exponentially for ε → ∞. In the

following, the second moment of the density of states is
used as the energy scale and is normalized to unity. Since
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Fig. 1. Curie temperature as a function of alloy concentration
x at U = 2 (upper panel) and 6 (lower panel) for n = 0.3 and
disorder ∆ = 1 (dashed lines) and 4 (solid lines).

the same density of states has been used earlier in refer-
ences [12,16] we are able to compare the specific numerical
results.

The one-particle Green function in equation (4)
is determined by solving the DMFT equations itera-
tively [12,13] using Quantum Monte-Carlo simulations
with the Trotter slice ∆τ = 1/4 [28]. Since we are mostly
interested in qualitative behavior of Tc vs. x at different U ,
n, and ∆, we do not perform the extrapolation of the re-
sults to ∆τ → 0. Curie temperatures are obtained by the
divergence of the homogeneous magnetic susceptibility ex-
plicitly implying that the ferromagnetic phase transitions
are of the second order [12,29,30].

3 Results for isoelectronic alloys

3.1 Curie temperature

The Curie temperature as a function of alloy concentra-
tion exhibits very rich and interesting behavior as is doc-
umented in Figures 1 and 2. It is usually expected that
Tc(x) is suppressed in disordered systems. This indeed is
found for most cases when x is varied between zero and
one. However, at some concentrations and certain values
of U , ∆ and n, the Curie temperature is enhanced above
the corresponding value for the x = 0 (1) case. This is
shown in both panels of Figure 1 for 0.4 � x � 0.9 and
in the upper panel of Figure 2 for 0 � x � 0.2. The rela-
tive increase of Tc can be as large as 25%, as is found for
x ≈ 0.1 at n = 0.7, U = 2 and ∆ = 4 (upper panel of
Fig. 2).

This unusual enhancement of Tc is caused by three
distinct features of interacting electrons in the presence of
binary alloy disorder:[16]

i) The Curie temperature in the non-disordered case
T p

c ≡ Tc(∆ = 0), depends non-monotonically on band
filling n. Namely, T p

c (n) has a maximum at some filling
n = n∗(U), which increases as U is increased [12]; see also
our schematic plots in Figure 3.
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Fig. 2. Curie temperature as a function of alloy concentration
x at U = 2 (upper panel) and 6 (lower panel) for n = 0.7 and
disorder ∆ = 1 (dashed lines) and 4 (solid lines).
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Fig. 3. Schematic plots explaining the filling dependence of
Tc for interacting electrons with strong binary alloy disorder.
Curves represent T p

c , the Curie temperature for the pure sys-
tem, as a function of filling n at two different interactions
U1 � U2 [12]. Upper panel: For n � x, Tc of the disordered sys-
tem can be obtained by transforming the open (for U1) and the
filled (for U2) point from n to neff = n/x, and then multiplying
T p

c (n/x) by x as indicated by arrows. One finds Tc(n) < T p
c (n)

for U1, but Tc(n) > T p
c (n) for U2. Lower panel: For n � x,

Tc of the disordered system can be obtained by transforming
T p

c (n) from n to neff = (n− 2x)/(1− x), and then multiplying
T p

c [(n − 2x)/(1 − x)x] by 1 − x as indicated by arrows. One
finds Tc(n) > T p

c (n) for U1, but Tc(n) < T p
c (n) for U2.
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ii) As was described above, in the alloy disordered sys-
tem the band is split when ∆ � W . As a consequence,
for n < 2x and T 	 ∆ electrons occupy only the lower
alloy subband and for n > 2x both the lower and upper
alloy subbands are filled. In the former case the upper sub-
band is empty while in the later case the lower subband is
completely full. Effectively, one can therefore describe this
system by a Hubbard model mapped onto the either lower
or the upper alloy subband, respectively. The second sub-
band plays a passive role. Hence, the situation corresponds
to a single band with the effective filling neff = n/x for
n < 2x and neff = (n − 2x)/(1 − x) for n > 2x. It is then
possible to determine Tc from the phase diagram of the
Hubbard model without disorder [12].

iii) The disorder leads to a reduction of T p
c (neff) by a

factor α = x if the Fermi level is in the lower alloy subband
or α = 1 − x if it is in the upper alloy subband, i.e. we
find

Tc(n) ≈ αT p
c (neff), (9)

when ∆ � W (c.f. Appendix). Hence, as illustrated in
Figure 3, Tc can be determined by T p

c (neff). Surprisingly,
then, it follows that, for suitable U and n Curie tempera-
ture of a disordered system can be higher than that of the
corresponding non-disordered system [cf. Fig. 3].

The explanation of the Tc(x) enhancement, given
above, is supported by a detailed analysis how Tc changes
when ∆ increases at fixed x. The numerical results are
shown in Figure 4 at x = 0.1 and n = 0.7. Examples at
x = 0.5 already have been presented in reference [16]. For
n > 2x (results in Fig. 4 corresponds to this regime) the
Curie temperature initially decreases upon increasing ∆
from zero. However, when ∆ � U the trend is inverted
and Tc increases, finally saturating. At ∆ ∼ U the alloy
band splitting becomes effective, changing the behavior of
Tc versus ∆. As shown in Figure 4, only for small U the
Curie temperature is elevated above the value at ∆ = 0.
This is strongly related to the non-monotonic dependence
of T p

c (n), and in particular to the fact that its maximum
changes with U . Namely, as is illustrated in the lower panel
of Figure 3, only at small interactions T p

c (neff) > T p
c (n),

which is a necessary condition for the enhancement of Tc

by disorder. In the n < 2x case, on the other hand, the
necessary condition T p

c (neff) > T p
c (n) for an enhancement

of Tc implies that the interaction must be strong [16].

3.2 Magnetization and Curie constant

The two different cases n < 2x and n > 2x (when ∆ � W )
should correspond to two different behaviors of a saturated
magnetization, i.e. the magnetization for T → 0. Namely,
in the first case only the lower alloy subband is occupied
and the magnetization M ≡ 〈n̂↑〉− 〈n̂↓〉 = n, where 〈n̂↑,↓〉
are the average numbers of electrons with spin up or down.
However, in the second case M = n − 2x since the lower
alloy subband is split off and fully occupied by the elec-
trons with two spin species, thereby being magnetically
neutral.

In order to confirm this physical picture we calculate
the magnetization M(T ) as a function of temperature.
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Fig. 4. Changes of the Curie temperature with disorder ∆ at
x = 0.1 and n = 0.7 for different interactions U .
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Fig. 5. Magnetization and inverse static susceptibility at: x =
0.6, n = 0.3 and U = 6 (circles and dashed lines), and x = 0.1,
n = 0.7 and U = 2 (squares and solid lines). In both cases
∆ = 4.

The resultant magnetizations together with the inverse
static susceptibilities χ−1(T ) are presented in Figure 5 for
two cases: i) x = 0.6, n = 0.3, and U = 6 (filled and open
circles), corresponding to n < 2x case, and ii) x = 0.1,
n = 0.7, and U = 2 (filled and open squares) correspond-
ing to n > 2x instance. At both parameter sets Tc is en-
hanced by the alloy band splitting (∆ = 4). The numeri-
cally calculated magnetization (filled circles and squares)
follow very closely the theoretical Brillouin curves (dashed
and solid lines) [31,32]. The magnetization data, shown in
Figure 5, are consistent with our conjecture that the sat-
urated magnetization should be: M = n = 0.3 in case (i),
whereas M = n − 2x = 0.5 in case (ii).

Two interesting observations are made: Firstly, in the
case (ii) (with n > 2x), the presence of disorder increases
Tc while the saturated magnetization is suppressed below
its value at x = 0. In other words, the disordered system
becomes a weaker ferromagnet but with higher Tc. Sec-
ondly, although the correlated electrons in the disordered
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system are itinerant, the magnetization M(T ) is well re-
produced by the Brillouin curve, albeit formally this curve
is derived for localized moments [12]. The last observation
calls for an analytical proof within DMFT analogous to
that already given for the linear behavior of the inverse
susceptibility [29].

Within DMFT the uniform spin susceptibility for a
systems with paramagnet-ferromagnet phase transition
obeys the Curie-Weiss law χ(T ) = C/(T −Tc) [29], where
C is a Curie constant. The same Curie-Weiss law is also
derived with a mean-field theory for localized magnetic
moments and in this case the Curie constant is directly
proportional to the saturated magnetization. To check if
similar relation holds for itinerant electron system within
DMFT we compute the Curie constants obtaining: C1 =
0.240±0.002 in the case (i), and C2 = 0.385±0.001 in the
case (ii). It turns out that the ratio C1/C2 = 0.623±0.005
is very close to the ratio of saturated magnetizations
0.3/0.5 = 0.6. This result provides a new interpretation of
the Curie constant within DMFT, i.e. C is proportional
to the saturated magnetization, similarly as in localized
magnetic moment theory. In addition this finding corrob-
orates our initial conjecture regarding saturated magneti-
zation in two physically different cases n < 2x and n > 2x
at large ∆.

3.3 Metal-insulator transition

Upon increasing U and ∆, the Mott-Hubbard MIT occurs
at the electronic filling n = x [16,17]. Such MIT can also
be encountered by varying x. This MIT will be called an
alloy concentration controlled Mott transition. Approach-
ing a correlated insulator the itinerant ferromagnetism is
also suppressed due to localization of the electrons. Us-
ing linearized DMFT [33] it was estimated [17] that when
∆ → ∞ the critical interaction Uc ≈ 6

√
x. Such estima-

tion leads to Uc ≈ 3.3 for n = 0.3 (Fig. 1), and to Uc ≈ 5
for n = 0.7 (Fig. 2). This means that at ∆ = 4 and U = 6
(lower panels in Figs. 1 and 2) the Mott-Hubbard MIT is
possible at x = n.

4 Non-isoelectronic alloy

In many alloys the change in the concentration x alters
the electron density n. In this section we investigate Tc(x)
when x and n are varied simultaneously. The results pre-
sented in Figure 6 are obtained under the assumption that
x = 2n. When x = 0 the band is empty (the system is
a band insulator). Upon increasing x from zero to one,
the band filling increases from zero to one-half (quarter
filled band). This model realization would correspond to
the physical situation in Fe1−xCoxS2 alloy if the number
of states in eg band is normalized to one. Of course, this
analogy should not be stressed too far since in our model
an important exchange interaction (Hund’s coupling) is
absent.

As shown in Figure 6 the presence of disorder at weak
interaction always suppresses the Curie temperature with
respect to the non-disorder case. However, at large U and
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Fig. 6. Behavior of the Curie temperature for U = 2 (upper
panel) and 6 (lower panel) when the change of electron filling
n is associated with the change in the alloy concentration x.
At large U the Curie temperature is enhanced in the disorder
system.

∆ � 1 the Curie temperature is larger than that in the
pure case at the same filling.

This difference again can be understood on the ba-
sis provided by the scheme depicted in Figure 3. In the
present case n < 2x for all x, and only the lower al-
loy subband plays a role in the effective description at
large ∆. In this limit this subband is effectively filled with
neff = n/x = 1/2 electrons. Using the same arguments
as in the upper panel in Figure 3 we see that Tc(x) is
enhanced only for large U .

5 Conclusions

In the present paper we studied the one-band Anderson-
Hubbard model with binary alloy disorder showing that
the Curie temperature in such alloyed correlated elec-
tron system can reach higher values than those in the
non-disorder system. We also identified and discussed the
metal-insulator transition at non-integer fillings.

Regarding the physical systems, it is now of great im-
portance to extend the one-band Hubbard model with al-
loy disorder to a multi-band case and formulate the ad-
equate version of DMFT for solving this problem. It is
very interesting which aspect of the ferromagnetism in
one-band alloy are generic and will be present in multi-
band case.
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Appendix A: Hartree-Fock theory

Within the Hartree-Fock approximation one can find an-
alytically that in the strong disordered limit ∆ � W the
self-energy has the form

Σnσ = σ
UM

4
+ (1 − 2x)

∆

2
+

x(1 − x)∆2

z − σUM
4 − 2−x

2 ∆
, (10)

where M is the magnetization density. This self-energy
leads to the splitting of the density of states with x and
1 − x of the initial states in each alloy subband. Since
the integrated function in the equation for T HF

c is peaked
at ω = µ, only one of the subband gives contribution to
evaluate T HF

c . As a result, T HF
c ≈ αT HF p

c , where α = x
or 1 − x, as introduced in Section 2. Although in DMFT
one cannot find analytically the corresponding self-energy,
the splitting of the density of states also appears and only
one of the subbands contributes in the equation for Tc. In
analogy to the Hartree-Fock approximation, we assume
that Tc is reduced by α with respect to T p

c , which we find
to be valid even at strong interaction.

References

1. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70,
1039 (1998)

2. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)
3. G. Cao et al., cond-mat/0409157
4. S. Yeo et al., Phys. Rev. Lett. 91, 046401 (2003)
5. V.I. Anisimov et al., Phys. Rev. Lett. 89, 257203 (2002)
6. I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76,

323 (2004)
7. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)
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